If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=178
We move all terms to the left:
2x^2-(178)=0
a = 2; b = 0; c = -178;
Δ = b2-4ac
Δ = 02-4·2·(-178)
Δ = 1424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1424}=\sqrt{16*89}=\sqrt{16}*\sqrt{89}=4\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{89}}{2*2}=\frac{0-4\sqrt{89}}{4} =-\frac{4\sqrt{89}}{4} =-\sqrt{89} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{89}}{2*2}=\frac{0+4\sqrt{89}}{4} =\frac{4\sqrt{89}}{4} =\sqrt{89} $
| 4/5w+2=-2 | | 2(p+8)-8=16 | | Y=16x^2+90x | | 16x–15=-5x+48 | | x-3=3/2x+1 | | 8y-3=6y-(1-2y) | | 9n-8n+5=5 | | Z=-3a | | 7b−52 =6b−57 | | (3p+1)^2=12 | | -17+25=-2(x+4) | | 2(h+1)=7h-7 | | -23+6x=-(x-5) | | -2/5x+2/15=2/2 | | -11x+7=-5(x-5)-7(x+3) | | 2x–5/2x=6–8 | | 1/2(r+5)=7.5 | | 7x/8-6=8 | | (2/3)(3/2x)=(2/3)(5) | | 18y^2+12y+20=0 | | 6x-9+4x-11=180 | | -3(x+2)=10.4 | | x÷7=1 | | 25+4x+4x-21=180 | | 14x+12=12x+10 | | 13+11=-4(5x-6) | | 48t^2-75=0 | | 18-(3x+5)=(5x-1)-6 | | F(a)=7a | | 18-(3x+5)=5x-1)-6 | | 0.5(f-12)=4 | | c-37=25 |